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1. INTRODUCTION

There has been some recent interest on possible restrictions on the coeffi
cients of approximating polynomials [5-6]. Specifically, the problem being
investigated is stated as follows: Let S = {A k } be a sequence of nonnegative
real numbers. Let H s = {p(x) Ip(x) = L akxk and I ak I ~ Akk}. Let Co be
the set of all continuous real-valued functions f on [0, I] for whichf(O) = O.
What are necessary and sufficient conditions on the sequence S so that H s

is dense in Co in the uniform norm? Stafney [6] proved the following:

THEOREM A. .iflimk->oo A k = +00, then H s is dense in Co'

THEOREM B. .if rrmk->oo A k < +00, then H s is not dense in Co .

The present author improved somewhat on Theorem A with the following
[5] :

THEOREM C. .iffor each 0 < 8 < 1 and each M > 0 there exist arbitrarily
large N = N(8, M)for which A k ~ M if N8 ~ k ~ N, then H s is dense in

Co'

This paper improves significantly on all three of these theorems. The
notion of generalized Bernstein polynomial [4, p. 47] plays a critical role
in some of the proofs.

* Part of this work was done while the author held an NSF post-doctoral research
associateship at Rensselaer Polytechnic Institute.
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2. THE MAIN THEOREMS
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A divergent series of positive terms :L:=l 1jIXk is said to have property P
if for any N> 0 there is aD> 0 such that :L;=k 1jIXj > N whenever
IXkjlXn < D.

With this notation we now state

THEOREM 1. If the sequence S = {A k } contains a subsequence {A",} for
00 •which 1imk->00 A",. = + 00 and for which the series :Li=l 1jIXj has property P,

then H s is dense in Co .

THEOREM 2. If {A k } is bounded on the complement of a set of positive
integers {lXI' 1X2 ,•..}(IXI < 1X2 < ...) such that :L:=l 1jIXk < 00, then H s is not
dense in Co' In fact, any function f in the uniform closure of H s must be
analytic on some subinterval of [0, 1].

We note without proof that the hypothesis in Theorem 2 is equivalent to
the following:

Any subsequence {A", } of the sequence {A k } for which•

The proofs of these theorems require several lemmas.
If {lXk} is a sequence of integers satisfying

lim IX = +00'k-HfJ k ,

IXI = 1,

o = lXo < IXI < 1X2 < 1X3 < ... < IXn < IXn+! < "',

then define
n

Pn.(x) = (_l)n-k IXk+! •.• IXn L X"'i/Wk'(lXj),
i=k

where k ~ n are non-negative integers and where

(1)

(2)

(3)
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That is

Pnk(X) = (_l)n-k CXk+l ,., CXn

ROULIER

n

X L Xai/[(CXi - CXk) ... (CXi - CX;_I)(CX; - CX;+l) ... (CXi - CXn)].
i~k

Let ank = (l - (I/CXk+I» ... (l - I/cxn)· IffE qo, I], define

n

Bn!(x) = L !(ank) Pnk(X),
k~O

It is known that for any fEe [0, 1]. Bn! -- f uniformly on [0, I] [4, p. 47].
Now let

n

bnk = L I/[(cxi - CXk) '" (cxi - cxi-I) . (cxn - cxi) .. , (cxi+I - cx;)].
i~k

We now state the following:

LEMMA I. If fEe [0, I] and if 1 is a nonnegative integer define
PnZ(x) = r.:=z!(ank) Pnk(X) = r.:=z CkZXZ, Then there is a sequence {ni} of
positive integers and a positive constant K (both independent of I) for which

LIck! I ~ Ilfll Kani,
k=l

Proof We first prove that

ni ); I. (4)

n

L CXk+l ." cxnbnk ~ Kan
k~O

(5)

for some positive K and infinitely many n. First, note that if r > s then
CXr - CX s ); r - s.

(i)

Also note that

n I

bnk ~ i~k (j - k)! (n - j)!
2n- k

(n - k)! .

(ii) CXn ... CXk+l = (n!/k!) En ... Ek+l < (n!/k!) EI ... En'

Here we let CXi = jEi where, of course, Ei ;3 I j = 0, 1'00' . Combining (i) and
(ii) we have

n n (n)(1'1'1') "CX'" cx b ~" 2n - k E'" E = E ... E 3n
~ n k+l nk '" ~ kIn In'
k~O k=O
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We now have two cases:

Case I. There is a number M > 0 such that Ei ~ M all}. In this case
we see from (iii) that

n

L an ... ak+lbnk ~ (3M);'
k~O

for all n.

Case 2. limi-;oo En = +00 for some subsequence {En}.
I I

We may assume without loss of generality that En. ): Ek for each k ~ ni •

Then from (iii) we have '

for each}.

This concludes the proof of (5).
Equation (4) now follows from (5) and the inequality

n n n
LIck I ~ Ilfll L ak+l ... anbnk ~ Ilfll L ak+l ... anbnk .
k~l k~l k~O

LEMMA 2. Let 0 < a1 < a2 < ... be positive integers. Then there is a
o> 0 such that for all k and n the following inequality is true:

o
exp[(l/ak) + ... + (l/an)] ~ (l - l/ak) (l - I/an)

~ [(I/ak) + + (l/an)]-l. (6)

Proof The right half of this inequality is well-known and the proof is
omitted. We prove the left half. Since the ai are integers we know that
:L:l 1/a;2 converges. Hence,

00 I
Il (I - -.2) = 0 > O.
i~l a,

So, we have

And so,
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(6) now follows from this and the known inequality

n

TI (1 + 1/Lti) :(; exp[(1/Ltk) + ... + (1/Ltn)].
i~k

Proof of Theorem 1. Let f E Co and let E > 0 be given. Choose 00 > 0
such that If(x) I < E/2 if 0 < x < °0 , Let {nj} be the sequence of integers
for which Lemma 1 is true, and so that n1 < n2 < ....

Choose integer M > 0 such that lif - B~ II < E/2, whenever j> M.
j

By property P, choose 01 > 0 such that (Ltk/ Ltn) < 01 implies L:7=k+l 1ILtj >
1/°0 , Then by (6) we have

ank = (1 - l/Ltk+1) ... (1 - l/Ltn) < 00 if (LtkILtn) < 01 .

From this we see that

For eachj, define

Qix) = B~j(x) - L f(an;k) Pn;k(X).
Cik/Cinj <61

Ifj > M then

I f(x) - Qix)I :(; I f(x) - B~;(x)l + L I f(an;k)! IPn;ix )!
ak lan;<61

It should be noted that in the above estimate we used the fact that
Pnk(X) ~ 0 and L:~~o Pnk(X) = 1 [4, p. 46].

Let
nj

Qix) = L CkXak
•

k~l

Then by Lemma 1 we have

n;

LICk I :(; Ilfll Kan;.
k~l

But k ~ I if and only if Ltk/Ltnj ~ 01 . (i.e., Ltnj :(; Ltk/01)'
Hence,

I Ck I :(; Ilfll Kanj

:(; Ilfli K ~: = [lIfW lakK l16
1]ak, k = l, ... ,n.
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We now choose j so large that

Aa, > Ilfll l/a
, K 1f8

1

for all k for which rxkjrxn. ;?: 01 .
Then we have I Ck I ,(; A~' for rxkjrxn ;?: 01 and Ck = °for rxkjrxn < 01 .

'I 1
This completes the proof of Theorem 1.

The proof of Theorem 2 uses two lemmas.
The following lemma is well known and the proof is omitted [1, p. 171].

LEMMA 3. A family § offunctions in a region Q is normal if the functions
f E § are uniformly bounded on every compact subset ofQ.

(The definition of normal family is the same as that in [1, p. 168] and is
repeated here for the reader's convenience.)

A family § of functions f, defined in a region Q, is said to be normal if
every sequence Un} of functions fn E § contains a subsequence Un } which,
either converges uniformly or tends uniformly to 00 on every compact
subset of Q. The proof of the following lemma is given in [2, p. 7] and is
omitted here.

LEMMA 4 (Clarkson, Erdos). If ni is a sequence of positive integers
which satisfy L: (Ijni) < +00, and iff is uniformly approximable on [0, 1]
by polynomials involving only powers xn" then f is analytic on [0, 1).

Proof of Theorem 2. Suppose f is in the closure of H s. Then there is a
sequence {Pn} of polynomials from Hs which converges to f uniformly on
[0, 1]. We see that if Pn(x) = L:~~o ankxk then Iank I :'( Akk for all n, k. Let
{f3j} be the sequence of integers consisting of the complement of {rxk}'

For each positive integer n we now define

qn(x) = L an.a,xak
cxk~n

and

With these definitions we see that Pn(x) = qn(x) + rn(x) n = 1,2'00' . But
now we have the inequality

(c a constant independent of j and n).
So, on the interval [0, Ij4c) we have I rix) I ~ L (1j4)$1 ~ L:~~o (1j4)i =

4j3. In fact, if we consider rn as a function of a complex variable we have
I rn(z) I ~ 4j3 for all z satisfying I z I < Ij4c. Hence, rn(z) is uniformly
bounded on every compact subset of the circle [ z I < Ij4c.
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So, by Lemma 3, the sequence {rn}, n = 1,2,... , is a normal family. Hence,
there must be a subsequence {rn } which converges uniformly to a function

k

h on every compact subset of the circle Iz I < 1/4e. So, h is analytic on
[0, 1/4e). Now consider the sequence qn (x) = Pn (x) - rn (x). We see that

k k k

qn/x) tends uniformly to f - h on [0, 1/8e]. Lemma 4 clearly implies, then,
thatf - h is analytic on [0, 1/8e). But thenfmust be analytic on [0, 1/8e).
This completes the proof of Theorem 2.

3. REMARKS

(a) We see that the "gap" between Theorem I and Theorem 2 is the
rapidity with which the series LOla.;) diverges. One might argue that this
difficulty might have been avoided by considering partial products instead
of partial sums. Lemma 4 however, clearly shows that these two approaches
are equivalent.

(b) The motivation for the proof of Theorem I is the same as the gen
eral approach used in [5]. The only difference is that this paper uses the
"generalized" Bernstein polynomials instead of the usual ones. The main
difficulty here is with the points ank which do not, in general, behave like the
points kin in the usual Bernstein polynomial.
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